3,4-Methylenedioxy-a-amyl-cinnamylaldehyde was prepared analogously from heptanal (11.4 g.) and piperonal (15 g.). The fraction 150-160° (0.8 mm.) of the condensation product was purified via the semicarbazone as above. From butyl alcohol long needles, m. p. 155°, were obtained.

Anal. Calcd. for $C_{16}H_{21}O_{3}N_{3}$: N, 13.9. Found: N, 14.0. The pure aldehyde had b. p. 158-159° (0.9 mm.).

THE DANIEL SIEFF RESEARCH INSTITUTE REHOVOTH, PALESTINE **RECEIVED NOVEMBER 26, 1943**

NEW COMPOUNDS

Some Aryl and Aralkyl Ureas

In connection with a study of the hypnotic properties of aryl ureas carried out by a pharmacological group in these Laboratories, a number of halogenated unsymmetrical aryl alkyl ureas have been prepared. Data on these and on some related unhalogenated ureas and symmetrically substituted ureas are presented in Table I.

Preparation of Secondary Amines.—The 3-chloro and bromo anisyl methyl and homo anisyl methyl amines (leading to ureas XVI-XIX) were prepared by halogenation of N-methyl anisyl and N-methyl homo anisyl amines in hydrochloric acid solution (XXIV in hydrobromic acid).

Whereas non-halogenated aromatic secondary amines are readily prepared by alkylation with alkyl halides, isolation of the secondary amine as the nitrosamine followed by reduction with stannous chloride, the alkyl bromides and iodides are unsuitable for reaction with halogenated aromatic amines,¹ the halogen being removed or displaced with resulting complications. By use of alkyl sulfates and alkyl toluene-sulfonates the desired alkyl groups can be introduced satisfactorily.

Ethylation was accomplished by stirring the primary amine with ethyl sulfate and water on the steam-bath until the layers had disappeared after which the conventional nitrosamine procedure was followed.

The secondary propyl and butyl amines corresponding to ureas IV and VI were obtained by warming 1 mol of alkyl toluene sulfonate with 2 mols of primary amine for three hours at $110-120^{\circ}$. The partially cooled melts were sludged with benzene and the bulk of the primary amines separated as salts of p-toluenesulfonic acid. Addition to the filtrate of alcoholic hydrogen chloride equivalent to about half of the remaining base precipitated virtually all of the remaining primary amines, after which the hydrochlorides of the secondary amines could be separated with-

TABLE I

SECONDARY	ARYL AN	D ARALKYL	UREAS R	1R2NCONH2
-----------	---------	-----------	---------	-----------

			М. р.,		Cryst. sol-	Empirical	Cale	ses, % Fou	, % Found	
	R ₁	R2	°C.ª	Appearance	vent ^b	formula	c	н	Ċ	н
1	CoHa	CH2CH2OH	110		Æ	C9H12O2N2	59.97	6.71	59.68	7.05
II ^c	2-Me-4-Cl-C ₈ H ₂	C_2H_5	93	Stout prisms	Æ-H	C10H13ON2Cl	56.46	6.16	56.59	6.19
IIId	2-Me-4-Br-C ₆ H₄	C ₂ H ₄	88.5-89	Rect. prisms	E-H	C10H12ON2Br	46.70	5.10	47.00	5.35
IV	The same	n-C:H7	94.5-95.5	Prisms	н	C11H15ON2Br	48.70	5.58	48.76	5.78
V ^e	2-Me-5-Cl-C6Ha	C2Hs	166-167	Felted needles	A-Aq	C10H12ON2Cl	56.46	6.16	56.52	6.37
VI ^f	The same	n-C4H9	79.5-80	Prisms	н	C12H17ON2Cl	59.86	7.12	59.84	7.44
VII	4-Me-2-Br-C6H2	C ₂ H ₅	116	Tiny prisms	Е	C10H15ON2Br	46.70	5.10	46.82	5.21
VIII	2.Et-4-Br-C6H:	C2H4	95 8	Small stout prisms	E-H	C11H18ON2Br	48.70	5.58	48.45	5.86
IX	4-Et•C ₆ H ₄	C2H4	122-124	Stout prisms	Æ-H	C ₁₁ H ₁₆ ON ₂	68.70	8.39	68.99	8.62
\mathbf{X}^{j}	4-Et-2-Br-C ₆ H ₈	C_2H_1	114	Stout prisms	E-H	C11H15ON2Br	48.70	5.58	48.65	5.76
XI	2,4-Me2C6H3	CgHs	73-74	Prisms	н	C11H18ON2	68.70	8.39	68.75	8.50
XII	C6H5CH2	CH3	135	Needle prisms	Æ	C ₉ H ₁₂ ON ₂	65.82	7.37	65,99	7.32
XIII	The same	$n-C_4H_9$	61-62	Needles	н	C12H18ON2	69.84	8.80	69.80	8.72
XIV^k	2-EtO-5-Br-C6H3	C_2H_4	124 - 124.5	Needles	Æ-H	C11H15O2N2Br	45.98	5.27	46.24	5.50
xv	4-MeO-C6H4-CH2	CH:	140-141	Flattened needles	A-Aq	C10H14O2N2	61.82	7.27	62.12	7.46
XVI	4-MeO-3-Cl-C6H2CH2	CH:	169-169.5	Leaflets	A	C10H15O2N2Cl	52.49	5.73	52.52	5.64
XVII	4•MeO-3•Br-C6H3CH2	CH:	178	Leaflets	A	C10H12O2N2Br	43.95	4.80	44.22	5.10
XVIII	4-MeO-3-Cl-C6H3CH2CH2	CH:	117.5-118	Prisms	Æ	C11H15O2N2Cl	54.41	6.23	54.49	6.38
XIX	4-MeO-3-Br-CtH2CH2CH2	CH:	116.5-117	Prisms	ƕH	C11H15O2N2Br	45.97	5.27	46.03	5.30
		Sy	mmetricall	y substituted ure	as					
XX	2.Me-4-Br-CsHaNHCONHEt		230-232	finy felted needles	HAc	C10H12ON2Br	46.70	5.10	47.00	5.45
ХXI	2,4•Me2-C6H2NEtCONHEt		76	Stout prisms	н	C12H20N2	70.86	9.16	70.62	9.19
XXII	2-Et-C6H4NEtCON(COC6H5)2		128-129	Needles	в	C25H24O2N2	74.97	6.04	75.00	6.38
							(N = 7	.00)	(N = 0)	3.95)
	S	econdary Ar	alkylamine	Hydrochlorides :	R_1R_2N	H•HC1			•	
XXIII	4-MeO-3-Cl-C6H3CH2	CH3	201-201.5	Needle prisms	Α	C ₉ H ₁₃ ONCl ₂	48.64	5.90	48.76	6.03
XXIV	4-MeO-3-Br-C6H3CH2									
	(hydrobromide)	CH:	202-203	Needles	Α	C ₉ H ₁ ;ONBr ₂	34.73	4.21	35.08	4.44
$\mathbf{x}\mathbf{x}\mathbf{v}$	4-MeO-3-Cl-CeH2CH2CH2	CH	196	Felted needles	Æ	CuHUONCI	50 84	6 41	51 00	6 50

215-216 Fine needle prisms A C10H15ONCIBr 42.78 5.39 42.94 5.49 ^a All melting points corrected. ^b A = ethanol; E = ethyl acetate; E = ether; H = hexane; Aq = water; HAc = acetic acid; B = benzene. ^c B. p. (13 mm.) of secondary amine, 136°. ^d B. p. (0.25 mm.) of secondary amine, 96–99°. ^e B. p. (27 mm.) of secondary amine, 141°. ^f B. p. (1 mm.) of secondary amine, 125°. ^g B. p. (17 mm.) of secondary amine, 137°. ^h B. p. (3 mm.) of secondary amine, 135°. ⁱ B. p. (22 mm.) of secondary amine, 122–123°. ^j B. p. (3 mm.) of secondary amine, 107°. ^k B. p. (0.25 mm.) of secondary amine, 111°.

The secondary amines corresponding to the ureas I, XI-XIII and XV are known. The amines corresponding to ureas XVI-XIX were characterized as salts and data thereon are also included in Table I. For the other sec-ondary bases boiling points are given. The derived ureas are themselves satisfactory as compounds of characterization.

CH₃

XXVI 4-MeO-3-Br-CeH2CH2CH2

out trouble. In some runs sulfonamide formation was encountered.

Preparation of Ureas.-The symmetrically substituted ureas XX and XXI were prepared from ethyl isocyanate and the appropriate aromatic bases.

⁽¹⁾ Baltzly and Buck, THIS JOURNAL. 63, 1757 (1941).

The unsymmetrically substituted ureas I-XIX were formed by the reaction of nitro-urea with the corresponding secondary amines. This reaction is not complete with aromatic secondary amines having ortho-substitution. Ordinarily unreacted amine can be separated by partitioning between ether or benzene and about 6% hydrochloric acid. When, however, there is halogen substitution the basicity of the amine is too low for this separation. Steamdistillation from saturated sodium chloride solution (at about 110°) proved to be adequate for the removal of the unreacted amine and it was then possible to crystallize the secondary ureas reported here. The s-butyl derivative analogous to the ureas III and IV was not obtained in crystalline form. Tested physiologically as a crude preparation it showed considerable hypotic activity. The dibenzoyl urea XXII resulted from benzoylation of

The dibenzoyl urea XXII resulted from benzoylation of the known N-ethyl-N-o-ethyl phenyl urea either by the Schotten-Baumann method or by heating with benzoyl chloride in pyridine.

BURROUGHS WELLCOME & CO., U. S. A. JOHANNES S. BUCK EXPERIMENTAL RESEARCH LABORATORIES

TUCKAHOB, NEW YORK ALAN E. ARDIS

RECEIVED DECEMBER 10, 1943

Di-n-butyl-n-propylamine

This compound was prepared by the hydrolysis of γ -din-butylaminopropylmagnesium chloride with aqueous hydrochloric acid, and by the interaction of 2 moles of din-butylamine and 1 mole of *n*-propyl iodide in a sealed tube at 120° for four hours, removing the residual secondary amine by shaking with benzoyl chloride and 10% sodium hydroxide.

Both methods gave an identical product, with the following constants: b. p. (754 mm.) 193°; b. p. (8 mm.) $73-75^\circ$; d^{34} , 0.7622; n^{36} D 1.4248.

The picrate crystallized easily from 95% alcohol or from ether; m. p. 115.8-116.2°.

The picrate was analyzed for C and H. Calculated for $C_{17}H_{18}N_4O_7$: mol. wt., 400.42; C, 50.99; H, 7.05. Found: C, 50.90; H, 6.77.

NATIONAL INSTITUTE OF HEALTH

BETHESDA, MARYLAND, THEODORE D. PERRINE RECEIVED DECEMBER 23, 1943

o-Phenylene Dioxyacetic Acid and its Ethyl Ester

The ethyl ester of *o*-phenylenedioxyacetic acid was prepared by refluxing dichloroethyl acetate with catechol in absolute ethanol solution in the presence of 2 moles of sodium and in an atmosphere of nitrogen until neutral to litmus. The reaction mixture was diluted with water, the ester extracted with ether, washed with sodium hydroxide solution and water, and isolated by fractionation; boiling point 115-117° at 12.5 mm.

Anal. Calcd. for C₁₉H₁₀O₄: C, 61.86; H, 5.15; mol. wt., 194. Found: C, 61.09; H, 5.70; mol. wt. (Rast), 191.

The product gave no test for halogen nor phenolic hydroxyl.

The acid was prepared from its ester by hydrolysis with 1 N sodium hydroxide solution; melting point, 107-108° (uncor.) from ether-petroleum ether.

Anal. Caled. for C₆H₆O₄: C, 57.84; H, 3.79. Found: C, 58.12; H, 3.91.

All attempts to effect direct preparation of *o*-phenylene dioxyacetic acid by condensation between catechol and dichloroacetic acid failed.

DEVELOPMENT LABORATORY

E. R. SQUIBB & SONS, BROOKLYN, N. Y. W. G. CHRISTIANSEN M. A. DOLLIVER

Received November 23, 1943

A New Ammine of Basic Copper Chromate

The salt which most commonly separates from ammonia-cal copper chromate solutions is $Cu(NH_4)_4CrO_4$. Other ammines have been described.¹ However, from solutions deficient in chromium and containing a considerable excess of ammonium hydroxide, there separates a previously undescribed compound, having the composition 2CuO-4NH₂·CrO₂·H₂O. In a typical experiment, the crystals were obtained by adding to a suspension of 14.3 g. of basic copper carbonate in 20 ml. of water, 20 ml. of a solution containing 220 g. of ammonium dichromate per liter; 50 ml. of concentrated ammonium hydroxide was added and the mixture shaken thoroughly. Solution was complete except for a few bluish flecks. On standing at room temperature for several days, crystals of the new compound will frequently deposit. Once a crop has been obtained, preparation of the material may be ensured by seeding the solution with the compound. Cooling should be avoided, as at low temperatures green needles of Cu(NH4)4CrO4 tend to separate. The yield, after washing with ammonium hydroxide, alcohol and ether, and drying, is about 6 g. The crystals of the new compound are 0.05-1.0 mm. on a side, thickly tabular, almost cubic in habit, greenish-black by reflected light and deep blue-green by transmitted light. The material slowly loses ammonia on exposure to the air, and stoppered preparations have a noticeable odor. On ignition at low temperatures, the crystals decompose with mild deflagration. The crystalline substance becomes coated with an orange-brown discoloration on exposure to air, and water decomposes it to a yellow basic copper chromate. It is insoluble in alcohol, ether, benzene and carbon tetrachloride, and soluble in ammonium hydroxide and acids, being decomposed by the latter; d^{46} , 2.49.

Anal. Caled. for 2CuO 4NH₄.CrO₅.H₂O: CuO, 46.09; NH₄, 19.73; CrO₄, 28.96; H₂O, 5.22. Found: CuO, 46.21; NH₅, 19.55; CrO₅, 28.92; H₂O, 5.33.

RESEARCH LABORATORIES

MUTUAL CHEMICAL CO. OF AMERICA BALTIMORE, MARYLAND WINSLOW H. HARTFORD RECEIVED SEPTEMBER 29, 1943

(1) Mellor, "A Comprehensive Treatise on Inorganic and Theoretical Chemistry," Longmans, Green and Co., London, 1931, Vol. 11, pp. 261-262.